Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Genes (Basel) ; 12(12)2021 12 18.
Article in English | MEDLINE | ID: mdl-34946966

ABSTRACT

Congenital microcephaly causes smaller than average head circumference relative to age, sex and ethnicity and is most usually associated with a variety of neurodevelopmental disorders. The underlying etiology is highly heterogeneous and can be either environmental or genetic. Disruption of any one of multiple biological processes, such as those underlying neurogenesis, cell cycle and division, DNA repair or transcription regulation, can result in microcephaly. This etiological heterogeneity manifests in a clinical variability and presents a major diagnostic and therapeutic challenge, leaving an unacceptably large proportion of over half of microcephaly patients without molecular diagnosis. To elucidate the clinical and genetic landscapes of congenital microcephaly, we sequenced the exomes of 191 clinically diagnosed patients with microcephaly as one of the features. We established a molecular basis for microcephaly in 71 patients (37%), and detected novel variants in five high confidence candidate genes previously unassociated with this condition. We report a large number of patients with mutations in tubulin-related genes in our cohort as well as higher incidence of pathogenic mutations in MCPH genes. Our study expands the phenotypic and genetic landscape of microcephaly, facilitating differential clinical diagnoses for disorders associated with most commonly disrupted genes in our cohort.


Subject(s)
Exome Sequencing/methods , Gene Regulatory Networks , Microcephaly/genetics , Mutation , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Microcephaly/diagnostic imaging , Pedigree , Sequence Analysis, DNA
2.
J Appl Genet ; 62(3): 477-485, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33982229

ABSTRACT

Mowat-Wilson syndrome is a rare neurodevelopmental disorder caused by pathogenic variants in the ZEB2 gene, intragenic deletions of the ZEB2 gene, and microdeletions in the critical chromosomal region 2q22-23, where the ZEB2 gene is located. Mowat-Wilson syndrome is characterized by typical facial features that change with the age, severe developmental delay with intellectual disability, and multiple congenital abnormalities. The authors describe the clinical and genetic aspects of 28th patients with Mowat-Wilson syndrome diagnosed in Poland. Characteristic dysmorphic features, psychomotor retardation, intellectual disability, and congenital anomalies were present in all cases. The incidence of most common congenital anomalies (heart defect, Hirschsprung disease, brain defects) was similar to presented in literature. Epilepsy was less common compared to previously reported cases. Although the spectrum of disorders in patients with Mowat-Wilson syndrome is wide, knowledge of characteristic dysmorphic features awareness of accompanying abnormalities, especially intellectual disability, improves detection of the syndrome.


Subject(s)
Facies , Hirschsprung Disease , Intellectual Disability , Microcephaly , Hirschsprung Disease/diagnosis , Hirschsprung Disease/genetics , Humans , Intellectual Disability/genetics , Microcephaly/genetics , Poland , Zinc Finger E-box Binding Homeobox 2/genetics
4.
Genet Med ; 23(1): 149-154, 2021 01.
Article in English | MEDLINE | ID: mdl-32873933

ABSTRACT

PURPOSE: Biallelic variants in TBC1D24, which encodes a protein that regulates vesicular transport, are frequently identified in patients with DOORS (deafness, onychodystrophy, osteodystrophy, intellectual disability [previously referred to as mental retardation], and seizures) syndrome. The aim of the study was to identify a genetic cause in families with DOORS syndrome and without a TBC1D24 variant. METHODS: Exome or Sanger sequencing was performed in individuals with a clinical diagnosis of DOORS syndrome without TBC1D24 variants. RESULTS: We identified the same truncating variant in ATP6V1B2 (NM_001693.4:c.1516C>T; p.Arg506*) in nine individuals from eight unrelated families with DOORS syndrome. This variant was already reported in individuals with dominant deafness onychodystrophy (DDOD) syndrome. Deafness was present in all individuals, along with onychodystrophy and abnormal fingers and/or toes. All families but one had developmental delay or intellectual disability and five individuals had epilepsy. We also describe two additional families with DDOD syndrome in whom the same variant was found. CONCLUSION: We expand the phenotype associated with ATP6V1B2 and propose another causal gene for DOORS syndrome. This finding suggests that DDOD and DOORS syndromes might lie on a spectrum of clinically and molecularly related conditions.


Subject(s)
Epilepsy , Intellectual Disability , Nails, Malformed , Vacuolar Proton-Translocating ATPases , Epilepsy/genetics , Exome , GTPase-Activating Proteins , Humans , Intellectual Disability/genetics , Nails, Malformed/genetics , Phenotype , Vacuolar Proton-Translocating ATPases/genetics
5.
Hum Mol Genet ; 24(25): 7171-81, 2015 Dec 20.
Article in English | MEDLINE | ID: mdl-26443594

ABSTRACT

Next generation genomic technologies have made a significant contribution to the understanding of the genetic architecture of human neurodevelopmental disorders. Copy number variants (CNVs) play an important role in the genetics of intellectual disability (ID). For many CNVs, and copy number gains in particular, the responsible dosage-sensitive gene(s) have been hard to identify. We have collected 18 different interstitial microduplications and 1 microtriplication of Xq25. There were 15 affected individuals from 6 different families and 13 singleton cases, 28 affected males in total. The critical overlapping region involved the STAG2 gene, which codes for a subunit of the cohesin complex that regulates cohesion of sister chromatids and gene transcription. We demonstrate that STAG2 is the dosage-sensitive gene within these CNVs, as gains of STAG2 mRNA and protein dysregulate disease-relevant neuronal gene networks in cells derived from affected individuals. We also show that STAG2 gains result in increased expression of OPHN1, a known X-chromosome ID gene. Overall, we define a novel cohesinopathy due to copy number gain of Xq25 and STAG2 in particular.


Subject(s)
Antigens, Nuclear/genetics , Intellectual Disability/genetics , Cell Cycle Proteins , Chromosomes, Human, X/genetics , DNA Copy Number Variations/genetics , Humans , Male , Problem Behavior , Reverse Transcriptase Polymerase Chain Reaction
6.
Lancet Neurol ; 13(1): 44-58, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24291220

ABSTRACT

BACKGROUND: Deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures (DOORS) syndrome is a rare autosomal recessive disorder of unknown cause. We aimed to identify the genetic basis of this syndrome by sequencing most coding exons in affected individuals. METHODS: Through a search of available case studies and communication with collaborators, we identified families that included at least one individual with at least three of the five main features of the DOORS syndrome: deafness, onychodystrophy, osteodystrophy, intellectual disability, and seizures. Participants were recruited from 26 centres in 17 countries. Families described in this study were enrolled between Dec 1, 2010, and March 1, 2013. Collaborating physicians enrolling participants obtained clinical information and DNA samples from the affected child and both parents if possible. We did whole-exome sequencing in affected individuals as they were enrolled, until we identified a candidate gene, and Sanger sequencing to confirm mutations. We did expression studies in human fibroblasts from one individual by real-time PCR and western blot analysis, and in mouse tissues by immunohistochemistry and real-time PCR. FINDINGS: 26 families were included in the study. We did exome sequencing in the first 17 enrolled families; we screened for TBC1D24 by Sanger sequencing in subsequent families. We identified TBC1D24 mutations in 11 individuals from nine families (by exome sequencing in seven families, and Sanger sequencing in two families). 18 families had individuals with all five main features of DOORS syndrome, and TBC1D24 mutations were identified in half of these families. The seizure types in individuals with TBC1D24 mutations included generalised tonic-clonic, complex partial, focal clonic, and infantile spasms. Of the 18 individuals with DOORS syndrome from 17 families without TBC1D24 mutations, eight did not have seizures and three did not have deafness. In expression studies, some mutations abrogated TBC1D24 mRNA stability. We also detected Tbc1d24 expression in mouse phalangeal chondrocytes and calvaria, which suggests a role of TBC1D24 in skeletogenesis. INTERPRETATION: Our findings suggest that mutations in TBC1D24 seem to be an important cause of DOORS syndrome and can cause diverse phenotypes. Thus, individuals with DOORS syndrome without deafness and seizures but with the other features should still be screened for TBC1D24 mutations. More information is needed to understand the cellular roles of TBC1D24 and identify the genes responsible for DOORS phenotypes in individuals who do not have a mutation in TBC1D24. FUNDING: US National Institutes of Health, the CIHR (Canada), the NIHR (UK), the Wellcome Trust, the Henry Smith Charity, and Action Medical Research.


Subject(s)
Carrier Proteins/genetics , Craniofacial Abnormalities/genetics , Exome/genetics , Hand Deformities, Congenital/genetics , Hearing Loss, Sensorineural/genetics , Intellectual Disability/genetics , Internationality , Nails, Malformed/genetics , Phenotype , Sequence Analysis, DNA/methods , Adolescent , Carrier Proteins/chemistry , Child , Child, Preschool , Craniofacial Abnormalities/diagnosis , Female , GTPase-Activating Proteins , Hand Deformities, Congenital/diagnosis , Hearing Loss, Sensorineural/diagnosis , Humans , Infant , Intellectual Disability/diagnosis , Male , Membrane Proteins , Nails, Malformed/diagnosis , Nerve Tissue Proteins , Young Adult
7.
BMC Pediatr ; 10: 88, 2010 Dec 06.
Article in English | MEDLINE | ID: mdl-21134246

ABSTRACT

BACKGROUND: The 22q11.2 microdeletion syndrome (22q11.2 deletion syndrome -22q11.2DS) refers to congenital abnormalities, including primarily heart defects and facial dysmorphy, thymic hypoplasia, cleft palate and hypocalcaemia. Microdeletion within chromosomal region 22q11.2 constitutes the molecular basis of this syndrome. The 22q11.2 microdeletion syndrome occurs in 1/4000 births. The aim of this study was to determine the frequency of 22q11.2 microdeletion in 87 children suffering from a congenital heart defect (conotruncal or non-conotruncal) coexisting with at least one additional 22q11.2DS feature and to carry out 22q11.2 microdeletion testing of the deleted children's parents. We also attempted to identify the most frequent heart defects in both groups and phenotypic traits of patients with microdeletion to determine selection criteria for at risk patients. METHODS: The analysis of microdeletions was conducted using fluorescence in situ hybridization (FISH) on metaphase chromosomes and interphase nuclei isolated from venous peripheral blood cultures. A molecular probe (Tuple) specific to the HIRA (TUPLE1, DGCR1) region at 22q11 was used for the hybridisation. RESULTS: Microdeletions of 22q11.2 region were detected in 13 children with a congenital heart defect (14.94% of the examined group). Microdeletion of 22q11.2 occurred in 20% and 11.54% of the conotruncal and non-conotruncal groups respectively. Tetralogy of Fallot was the most frequent heart defect in the first group of children with 22q11.2 microdeletion, while ventricular septal defect and atrial septal defect/ventricular septal defect were most frequent in the second group. The microdeletion was also detected in one of the parents of the deleted child (6.25%) without congenital heart defect, but with slight dysmorphism. In the remaining children, 22q11.2 microdeletion originated de novo. CONCLUSIONS: Patients with 22q11.2DS exhibit wide spectrum of phenotypic characteristics, ranging from discreet to quite strong. The deletion was inherited by one child. Our study suggests that screening for 22q11.2 microdeletion should be performed in children with conotruncal and non-conotruncal heart defects and with at least one typical feature of 22q11.2DS as well as in the deleted children's parents.


Subject(s)
Gene Frequency , Heart Defects, Congenital/genetics , Child , Child, Preschool , Chromosome Deletion , Chromosomes, Human, Pair 22/genetics , Female , Genetic Predisposition to Disease , Heart Defects, Congenital/diagnosis , Heart Septal Defects, Atrial/genetics , Heart Septal Defects, Ventricular/genetics , Humans , Infant, Newborn , Male , Poland/epidemiology , Risk Factors , Tetralogy of Fallot/genetics
8.
J Appl Genet ; 49(1): 101-3, 2008.
Article in English | MEDLINE | ID: mdl-18263975

ABSTRACT

We present the case of a 9-year-old boy with DOOR syndrome recognized in the first year of his life because of a delayed development of speech. The diagnosis was based on characteristic abnormalities, including congenital deafness, nail and bone abnormalities, and mild mental retardation.


Subject(s)
Deafness/genetics , Finger Phalanges/abnormalities , Intellectual Disability/genetics , Nails, Malformed/genetics , Toe Phalanges/abnormalities , Child , Child, Preschool , Female , Foot Deformities, Congenital/genetics , Genes, Recessive , Hand Deformities, Congenital/genetics , Humans , Infant , Male , Syndrome
9.
Am J Med Genet A ; 146A(3): 337-42, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18203171

ABSTRACT

Deletions of chromosome bands 13q33-34 are rare. Patients with such deletions have mental retardation, microcephaly, and distinct facial features. Male patients frequently also have genital malformations. We report on four patients with three overlapping deletions of 13q33-34 that have been characterized by tiling-path array-CGH. Patient 1 had mental retardation and microcephaly with an interstitial 4.7 Mb deletion and a translocation t(12;13)(q13.3;q32.3). His mother (Patient 2), who also had mental retardation and microcephaly, carried the identical chromosome aberration. Patient 3 was a girl with a de novo insertion ins(7;13)(p15.1;q22q31) and interstitial 4.5 Mb deletion in 13q33-34. She had mental retardation and microcephaly. Patient 4 was a newborn boy with severe genital malformation (penoscrotal transposition and hypospadias) and microcephaly. He had a de novo ring chromosome 13 lacking the terminal 9.3 Mb of 13q. Karyotype-phenotype comparisons of these and eight previously published del13q33-34 patients suggest EFNB2 as a candidate gene for genital malformations in males. Molecular cytogenetic definition of a common deleted region in all patients suggests ARHGEF7 as a candidate gene for mental retardation and microcephaly.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 13/genetics , Adult , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Intellectual Disability/genetics , Karyotyping , Male , Microcephaly/genetics
10.
Hum Genet ; 120(2): 171-8, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16783569

ABSTRACT

We report on a large family in which a novel X-linked recessive mental retardation (XLMR) syndrome comprising macrocephaly and ciliary dysfunction co-segregates with a frameshift mutation in the OFD1 gene. Mutations of OFD1 have been associated with oral-facial-digital type 1 syndrome (OFD1S) that is characterized by X-chromosomal dominant inheritance and lethality in males. In contrast, the carrier females of our family were clinically inconspicuous, and the affected males suffered from severe mental retardation, recurrent respiratory tract infections and macrocephaly. All but one of the affected males died from respiratory problems in infancy; and impaired ciliary motility was confirmed in the index patient by high-speed video microscopy examination of nasal epithelium. This family broadens the phenotypic spectrum of OFD1 mutations in an unexpected way and sheds light on the complexity of the underlying disease mechanisms.


Subject(s)
Ciliary Motility Disorders/genetics , Craniofacial Abnormalities/genetics , Mental Retardation, X-Linked/genetics , Proteins/genetics , Alleles , Blotting, Northern , Child , Chromosome Mapping , Ciliary Motility Disorders/pathology , Craniofacial Abnormalities/pathology , DNA, Complementary , Female , Frameshift Mutation , Genes, Recessive , Heterozygote , Humans , Male , Mental Retardation, X-Linked/pathology , Pedigree , Syndrome
11.
J Appl Genet ; 43(1): 115-8, 2002.
Article in English | MEDLINE | ID: mdl-12084977

ABSTRACT

Authors present the case of a 15-year-old boy assessed for Marfan syndrome for many years. The child was treated because of skeletal defects, mild mental deficiency and dysmorphic features of face. Chromosomal analysis showed a trisomy 8 mosaicism.


Subject(s)
Abnormalities, Multiple/genetics , Chromosomes, Human, Pair 8 , Mosaicism , Trisomy , Adolescent , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...